Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Hask.Prof
Documentation
data Procompose c d e p q a b where Source
Constructors
Procompose :: Ob d x => p x b -> q a x -> Procompose c d e p q a b |
Instances
(Category k1 c, Category k2 d, Category k e, ProfunctorOf k k2 d e p, ProfunctorOf k2 k1 c d q, Ob k1 c a) => Functor k * (Procompose k k k c d e p q a) | |
(Category k c, Category k1 d, Category k2 e, ProfunctorOf k2 k1 d e p, ProfunctorOf k1 k c d q) => Functor k (k -> *) (Procompose k k k c d e p q) | |
(Category k c, Category k1 d, Category k2 e) => Functor (k -> k -> *) ((k -> k -> *) -> k -> k -> *) (Procompose k k k c d e) | |
(Category k c, Category k1 d, Category k2 e, ProfunctorOf k2 k1 d e p) => Functor (k -> k -> *) (k -> k -> *) (Procompose k k k c d e p) | |
type Dom k * (Procompose k1 k2 k c d e p q a) = e | |
type Cod k * (Procompose k1 k2 k c d e p q a) = (->) | |
type Dom k (k2 -> *) (Procompose k k1 k2 c d e p q) = Op k c | |
type Cod k (k2 -> *) (Procompose k k1 k2 c d e p q) = Nat k2 * e (->) | |
type Dom (k1 -> k2 -> *) ((k -> k1 -> *) -> k -> k2 -> *) (Procompose k k1 k2 c d e) = Prof k1 k2 d e | |
type Cod (k1 -> k2 -> *) ((k -> k1 -> *) -> k -> k2 -> *) (Procompose k k1 k2 c d e) = Nat (k -> k1 -> *) (k -> k2 -> *) (Prof k k1 c d) (Prof k k2 c e) | |
type Dom (k -> k1 -> *) (k -> k2 -> *) (Procompose k k1 k2 c d e p) = Prof k k1 c d | |
type Cod (k -> k1 -> *) (k -> k2 -> *) (Procompose k k1 k2 c d e p) = Prof k k2 c e |